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Abstract— Scenario-based testing is seen as a key for the
verification and validation of automated vehicles (AV). In a test
scenario, the AV is tested under pre-defined traffic conditions.
However, realizing those traffic conditions is challenging due
to the autonomously behaving AV. The AV decides on its own,
whether it gets into the test scenario conditions at all, e.g., by
deciding on which lane it wants to drive or at which velocity
it is driving. In order to influence the AV’s decision making
in a required way to realize a test scenario condition, we
implement a novel AI method for controlling a surrounding
vehicle (SV) of the AV. The AI-controlled SV (AISV) consists
of a reinforcement learning (RL) agent which is trained to,
e.g., nudge the AV into changing lanes. In contrast to current
common practice, this approach does not require the manual
tailoring of triggers and actions for controlling the SV. In this
paper, we report on a working design of the RL framework
and experiments regarding three different training scopes for
the RL agent. We distinguish specialized agents which are
trained to reach a single scenario condition and two sorts
of generalized agents which shall be capable of reaching a
set of scenario conditions. The results show that specialized
agents perform the best with a success rate of up to 100 %.
However, the generalized agents perform better in realizing
scenario conditions which are not known to the agent from
training. We also report on an implementation of the approach
in a hardware-in-the-loop-simulation (HIL) test bench used in
industrial practice and discuss a first try-out.

I. INTRODUCTION

In the past, much research has been conducted on verifi-
cation and validation methods for automated vehicles (AV)
[3]–[5]. Among that, a multi-pillar approach emerges to be a
commonly agreed path to verify the functionality and safety
of an AV [6]. Here, the scenario-based approach plays an
important role. In a scenario, the AV is exposed to relevant
traffic scenarios for testing. Surveys like [7], [8] show the
extent of research which has already been done and make
the scenario-based approach state of research in testing AV.

Now, it is the responsibility of the test engineers to enable
the test execution of test scenarios with complex, industrial
grade Automated Driving System (ADS) on practice relevant
test benches. Since the AV behaves autonomously and is
not remotely controllable during test execution, only the
environment of the AV contains the controllable variables
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in the test setup. The scenario realization challenge can be
regarded as a scheduling, control or planning problem for
the vehicle guidance of the surrounding vehicles (SV). The
specific nature of the problem comes from the hard to predict
AV behavior. To complicate matters further, the AV behavior
certainly changes between evolving software versions. It is
therefore required to find a robust control method for the
SV to enable regression tests. This is a new challenge in
comparison to tests of simpler driver assistance features
where a human test driver or test automation tools can control
the ego-vehicle according to the test script [1].

Our vision of a solution to the scenario realization chal-
lenge consists of an automatic orchestration of the sur-
rounding traffic just by providing a scenario description.
Given that, we investigate whether and how this goal can be
achieved by a reinforcement learning (RL) [12] approach to
AI-controlled SV (AISV). Arguments in favor of this method
lie in the automatic learning of the interaction with the
black-box AV, scalability potentials (number of AISVs), and
easier to achieve real-time capabilities during deployment
than, e.g., with model-predictive-controllers. Our intention
is to proof the concept in a relatively simple traffic scenario
context with one AISV, but with the use of practice-relevant
software tools, i.e. MATLAB/Simulink. This shall allow an
easy transfer of a prototype to a practice relevant test bench
for AV.

Typically, many tests at OEM-level are conducted on sys-
tem or full-vehicle level on hardware-in-the-loop-simulation
(HIL) test benches [9]. On an end-to-end (from sensors
to actuators) HIL test bench as sketched on the right side
in Fig. 2, the real Electrical/Electronic (E/E) compound of
the vehicle is connected to a simulator. Although HIL tests
are conducted in a virtual environment, the presence of
real electronic control units (ECU) in the simulation loop
requires a realistic treatment of the ego-vehicle and its
surroundings. For example, like in the real world, a test
drive starts at standstill, the vehicle must be made ready
to drive, the Automated Driving System (ADS) needs to
locate itself in the environment, and the AD function must
be engaged. Unlike non-HIL simulations, for tests with the
end-to-end HIL setting, it is not possible to just spawn the
ego-vehicle in the initial scene of a test scenario. However,
the latter is common practice for model- or software-in-the-
loop simulations [10], [11] and motivates the research for
new solutions to the scenario realization problem further.

In this paper, we report on a working design and conducted
experiments of a concept for the automatic realization of test
conditions with an RL-based AI-controlled SV. The purpose
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Fig. 1. Concept for the automatic realization of initial conditions of test scenarios through an AI controlled surrounding vehicle, concept based on [1],
graphic based on [2].
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Fig. 2. RL agent development, training, evaluation environment (left) and
hardware-in-the-loop-simulation test bench for verification testing (right).

of this study is to analyze whether it is worth to split the
scenario realization challenge into several smaller challenges
and train a specialized agent for each. Smaller tasks per agent
could ease the learning problem and make finding a working
RL setup easier, what anyway is a very laborious task. We
compare the performance and training duration of:

• specialized agents, trained to reach one concrete traffic
condition;

• moderately-generalized agents, trained to reach a logi-
cal set of concrete traffic conditions;

• super-generalized agents, which aim for reaching any
traffic condition.

The results show, that the specialized agents perform the
best in solving their designated learned tasks with success
rates between 91 % and 100 %, while the moderately- and
super-generalized agents are worse with 78 % to 97 %
success rates. However, the generalized agents show indeed
generalization capabilities with which the training duration
can be reduced.

The contributions of this paper are:

• description of an RL configuration with which an agent
can be trained for the scenario realization challenge;

• description and results of controlled experiments regard-
ing the learning task and scope of a single RL agent in
the scenario realization challenge.

II. RELATED WORK

The scenario realization problem is not per se new. Tests
with advanced driver assistance systems (ADAS) equipped
cars in the real world or user studies in driving simulators
also bring up the challenge. The related work is split into the
parts of the scenario realization problem and the RL concept.

The scenario realization approach commonly is to manu-
ally script the test procedures. Schöner et al. describe in [14]
two ways of doing so. First, by prerecording humanly driven
trajectories and, second, by using graphical tools to design
and fine-tune maneuvers or trajectories of vehicles prior to
test execution. In the KO-HAF project [15] a tool called test
manager is developed for tests of ADAS-driven vehicles in
the real world. Here, the human drivers of SV are given a
graphical feedback whether they drive according to the test
scenario and how they should adapt their driving.

For tests in a driving simulator, the scenario realization
problem is long known as seen by the publication of [16]
from 1995 where state machines are utilized to create reac-
tive behavior of SV to realize desired situations. In driving
simulators, the participants of a study usually should drive
naturally and uninfluenced by an instructor. Similarly to the
test of an AV, a direct control of the participant respectively
the AV is not possible. A more recent approach for driving
simulators by Xiong et al. use an automated action planning
strategy to plan the behavior of the surrounding traffic [17].

For tests in simulations in general, a test scenario is usually
scripted prior to the test execution. Weber et al. distinct
in [18] two forms of scenario descriptions: declarative and
imperative scenarios. Imperative scenario descriptions ex-
plicitly define the actions of the actors, e.g., by defining
conditions for triggers and for the action execution. The
ASAM OpenSCENARIO XML [19] format mostly complies
to this definition. Declarative scenario descriptions formulate
conditions of scenario states but do not describe how or with
which action they are realized. The ASAM OpenSCENARIO
DSL [20] and GeoScenario [21] represent this type of sce-
nario descriptions. Declarative scenario descriptions require
intelligent interpreters and algorithms to realize the condi-
tions described in the scenario and transform the formulated
conditions from the scenario to movement of the actors in a
simulation. Those declarative scenario descriptions therefore
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Fig. 3. The specialized, moderately-generalized, and super-generalized
agents differ in the composition of conditions they are trained for to reach.

are currently supported by only very few simulation tools
with unknown performance to the public.

The second part of related work focuses on RL applica-
tions in driving control relevant to our concept. RL can be
used as an algorithm for the behavior decision of AV, e.g., for
lane change decisions as shown in [22], [23]. More general,
an RL design and training framework for behavior decision
tasks for automated driving is presented in [24]. Here, high-
level actions, e.g., lane change decisions, in combination with
low-level controllers for the steering are discussed. In [25],
the authors show how RL agents can be used to control
vehicles in lane free traffic. The RL agent could learn how
it needs to position itself on a road in order to let another
vehicle past. Further publications focus on directly finding
defects in the AV by changing the environment with the goal
of provoking crashes [26]–[28]. In [26], [27] the drivable
path of the AV is obstructed by controllable objects.

In comparison to our work, RL approaches from literature
focus on the development of driving algorithms or on the
identification of relevant test cases, but do not tackle the
problem of realizing concrete conditions from test scenarios.

III. CONCEPT

Our concept is to train a surrounding vehicle (SV) of
an AV to realize scenario conditions by goal-oriented in-
fluencing of the AV. The SV is controlled by an artificial
intelligence (AI), trained with RL. The AI-controlled SV
(AISV) learns how to influence the AV in order to trigger
actions of the AV. If a scenario condition describes that the
AV should drive on the left of two lanes, the AISV will learn
how to nudge the AV into driving on the desired lane. Fig. 1
shows how the AISV is used to achieve such expemplary
test conditions. The intention is to train the agent in a simple
simulation environment and then deploy the trained agent on
a HIL simulation test-bench of an AV, as shown in Fig. 2.

TABLE I
ACTIONS OF THE RL AGENT

number longitudinal lateral
1 keep velocity keep lane
2 accelerate (1 m/s2) keep lane
3 accelerate (4 m/s2) keep lane
4 decelerate (-1 m/s2) keep lane
5 decelerate (-4 m/s2) keep lane
6 keep velocity lane change left
7 keep velocity lane change right

In order to abstract the scenario realization problem, we
define three subtasks. They should address the constraints
from the hard-to-predict and changing AV behavior and the
need to realize a variety of conditions in a structured manner:

• reach a goal from a set of different start states;
• reach a goal for a set of different AV behaviors;
• reach a set of different goals.

Next, the modeled action space, observation space, reward
function, and environment of the RL agent are described,
based on prior systematic design variations.

A. Action space

Table I shows the seven actions the agent can choose from.
When performing a longitudinal action, a steering controller
keeps the vehicle in the center of the current lane. When
changing lanes, the current longitudinal velocity is kept. A
lane change can only be performed when there is a lane in
the target direction, the velocity is greater than 1 m/s and
the vehicle does not already perform a lane change. A pure
pursuit controller [29] is used as low-level steering controller
in the training environment. A lane change is completed
when the vehicle is within 0.25 m of the target lane center.

B. Observation space

The modeled observation space (see Table II) includes
continuous signals describing the longitudinal velocity vx
and current lane affiliation of AISV laneAISV and AV
laneAV (0: right lane, 1: left lane) as well as their rela-
tive position xrel, yrel, relative longitudinal velocity vxrel

and acceleration axrel. Furthermore, the observation space
contains Boolean-like signals about the current state of a
relational grid describing the relative positioning of the AISV
and the AV, see Fig. 4. The relational grid distinguishes
fourteen states, with only one being true at a time.

Additionally, the agent receives information about the
deviation from goal conditions via the observation channels
23 to 32. In the following described experiments, we train
the agent to reach goals defined by the lane affiliation
of AISV laneAISV,goal and AV laneAV,goal, their relative
longitudinal positioning xrel,goal, and relative longitudinal
velocity vxrel,goal. The observation space and (later de-
scribed) reward function have placeholders for more goal
parameters.



TABLE II
OBSERVATIONS OF THE RL AGENT

channel symbol [unit] range [min, max]
kinematic states

1 vxAISV [m/s] [0, 30]
2 laneAISV [1] [0,1]
3 xrel[m] [-150, 150]
4 vxrel[m/s] [-30, 30]
5 axrel[m/s2] [-10, 10]
6 yrel[m] [-10, 10]
7 vxAV [m/s] [0, 30]
8 laneAV [1] [0,1]

relational grid states
9 state no. 0 [0,1]

10-21 ... [0,1]
22 state no. 13 [0,1]

deviation from goal
23 xrel,goal − xrel[m] [-150, 150]
24 (n/a) yrel,goal − yrel[m] [-10, 10]
25 vxrel,goal − vxrel[m/s] [-50, 50]
26 (n/a) lanerel,goal − lanerel[1] [-4, 4]
27 (n/a) xAISV,goal − xAISV [m] [-1000, 1000]
28 laneAISV,goal − laneAISV [1] [-2, 2]
29 (n/a) vxAISV,goal − vxAISV [m/s] [-50, 50]
30 (n/a) xAV,goal − xAV [m] [-1000, 1000]
31 laneAV,goal − laneAV [1] [-2, 2]
32 (n/a) vxAV,goal − vxAV [m/s] [-50, 50]

AV
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Fig. 4. Relational grid for the observation space of the RL agent, based
on [22]. The value of placeholder channels (n/a) is constantly zero.

C. Reward function

The reward function is the result of many prior experi-
ments. This sparse reward function is very simple and only
rewards conditions that are easy to describe. This has the
advantage that the agent is not guided much by the course
of the reward function during training. Instead, the agent has
to learn a behavior very freely by random action choices
with which it arbitrarily has to reach goal conditions to be
rewarded. Additionally, the function punishes a collision of
the vehicles. The rewards are given only once when the goal
conditions are true for the first time. The reward function
R(s) of state s is as follows:

R(s) = Rrel. pos(s) +Rrel. pos and v(s)+

+Rrel. pos and abs. pos(s) +Rall goals(s) +Rcollision(s)

The term Rrel. pos(s) returns 1/6 of the max. reward when
the deviation of the relative positioning of the vehicles and
the goal parameter values xrel,goal−xrel and yrel,goal−yrel
are within the tolerances (i.e., +-4 m in our experiments)
and the vehicles are on the goal lanes laneAISV,goal and
laneAV,goal.

The term Rrel. pos and v(s) returns 1/6 of the max. re-
ward when the relative positioning goals are reached (see
Rrel. pos(s)) and the velocity related deviation signals
vxrel,goal−vxrel and vxAISV,goal−vxAISV and vxAV,goal−
vxAV are within the targeted boundaries (i.e., +-1.1 m/s in
our experiments).

Analogously, the term Rrel. pos and abs. pos(s) returns 1/6
of max. reward when the conditions defined in Rrel. pos(s)
are true and the deviation from absolute position goals
xAISV,goal − xAISV and xAV,goal − xAV are within a
defined threshold. In the following experiments, the absolute
position goals are not defined and therefore the signals are
always within their thresholds and the reward is given when
Rrel. pos(s) also returns the reward.

Additionally, 1/2 of max. reward is returned when the
conditions defined in Rrel. pos(s), Rrel. pos and v(s), and
Rrel. pos and abs. pos(s) are true at the same time. When
a collision between both vehicles is detected, the term
Rcollision(s) returns -10,000 points as punishment.

In total, the agent can get a max. reward of 200,000 points.
A training episode is finished when all goal conditions are
met, the vehicles collide, after a driven distance of 770 m or
when reaching the max. number of defined simulation steps.

D. Training environment and AV model

The RL agent is trained in a time-discrete MAT-
LAB/Simulink 2022a simulation environment with a sample
time of 0.1 s. The simulated driving environment consists of
a two lane, straight road. The vehicle dynamics are modeled
by a kinematic single-track model. Each time step, the agent
choses an action which is executed by lower-level driving
controller of the AISV. Additionally, in each time step, the
AV model reads the relative and absolute values of the
distance, lane indices and velocity of AISV and AV, decides
for a lateral behavior (stay on lane, change to the left or
right) while adjusting its speed to a fixed target velocity.

From the perspective of the RL agent, the AV model
is part of the environment. The AV model consists of a
very simple rule-based lane change decision model, a pure
pursuit steering controller and a simple velocity controller.
The AV behavior can be varied by adjusting three AV be-
havior parameters: target velocity vxAV,target, as well as the
relative velocity threshold vxrel,lanechange and the relative
longitudinal distance threshold xrel,lanechange to trigger a
lane change. It should be noted that the AV does not have
a following control of a slower moving vehicle in front.
The AV switches from the right to the left lane, when a
surrounding vehicle is within xrel,lanechange infront of the
AV and the SV drives slower than vAV − vrel,lanechange.
When the AV is on the left lane with no other vehicle in a
safe distance on the right lane, the AV switches to the right.

IV. EXPERIMENTS

The experiments take place in the training environment
of the RL agent. In the experiments, we train specialized,
moderately-generalized and super-generalized agents. The
agents differ in their deployment scope, as shown in Fig. 3.



Exp. 1 deals with specialized agents. A specialized agent
has the task of reaching a single goal. Exp. 2 deals with
moderately-generalized agents and one super-generalized
agent. A moderately-generalized agent has the task of reach-
ing a super set of goals which contains more than one goal
from the same logical group of goals. In our definition, goals
from the same logical group differ only in the values of one
goal parameter, i.e., xrel,goal. A super-generalized agent has
the task to reach goals from different logical groups of goals.

For the evaluation of the agents generalization capabilities,
the trained agents are tested in the same simulation environ-
ment but with previously unseen goal conditions.

Procedure of the experiments: During the experiments,
the agents are trained and afterwards tested regarding their
success in the trained tasks. The procedure of both experi-
ments is as follows:

• train three agents for the same set of goals with different
randomization seeds

• measure the amount of training episodes that is needed
until a reward threshold is reached

→ average and aggregated training duration of the three
agents is shown in Fig. 6

• deploy the agents with a deterministic policy on each
concrete task from their training and measure how
often an agent reaches the goal and calculate the
successrate = |reachedgoals|/|tasks|

→ results of the best of three agents is shown in Fig. 6
A training session consists of several episodes, each in-

cluding a drive from a start state at stand still until a stop
is triggered. Between the end and start of a new episode, a
reset function sets the vehicles back to a start state. Within
the reset function, a randomization algorithm randomly com-
bines new start state, AV behavior, and goal parameters
from the given sets. Although the task seems more difficult,
results from prior experiments show that varying start states
enhances the speed of learning. Additionally, we vary the AV
behavior during the training to make the agent robust against
AV behavior changes. For exp. 1, the size of the set of goals
per agent is one, while it is greater than one for exp. 2.

The sets of start states and AV behaviors is equal for exp. 1
and 2. The set of start states is (values refer to SI units):

startstates =

{(laneAISV,0, laneAV,0, xrel,0)|
laneAISV,0 ∈ {rightlane, leftlane},
laneAV,0 ∈ {rightlane, leftlane},
xrel,0 ∈ {−100,−50,−25,−10, 10, 25, 50, 100}}

The set of AV behaviors is (values refer to SI units):

AV behaviors =

{(vxAV,target, xrel,lanechange, vxrel,lanechange)|
vxAV,target ∈ {4, 6, 8, 10},
xrel,lanechange ∈ {−35,−45,−55},
vxrel,lanechange ∈ {0,−2,−3.9}}
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Fig. 5. logical groups of goals

A negative relative velocity means that the AISV travels
faster than the AV and a negative relative distance means
that the AISV is in front of the AV.

In analogy to the start states, the goal conditions describe
the targeted relative longitudinal distance between both ve-
hicles and their targeted lanes. The set of goals is:

goals = {(laneAISV,goal, laneAV,goal, xrel,goal)}

The combination of start state, AV behavior and goal define
a concrete task for the training session. The super set tasks
is as follows:

tasks = startstates×AV behaviors× goals

RL agent settings: For the design and training of the RL
agent, we use the MATLAB/Simulink 2022a reinforcement
learning toolbox. Initially, we experimented with PPO and
DQN algorithms, but achieved the first successes with a
double DQN algorithm and then further fine tuned its pa-
rameters. The agents critic consists of the default network
from the toolbox with two hidden layers and 256 neurons.
The structure of the neural network was not yet the main
focus of the parameter variation. The other parameters were
identified through systematic variations and showed a robust
learning success for varying random number generator seeds.
The experience buffer is set to 500000, the minibatch size is
32, the learning rate is 0.001. An epsilon of 1 with a decay
of 0.00003 and a minimum of 0.01 is used along with an n-
step lookahead of 16. In the experiments, we conduct three
training sessions per agent with a different randomization
seed for the RL framework. The trainings are conducted on
a consumer notebook or PC and are set to run on the CPU.
The training of 1000 episodes takes approx. 85 minutes.

In exp. 1, each agent is trained for a maximum of 10000
episodes with max. 700 time steps before aborting. In exp. 2,
the max. allowed amount of time steps is 2000. A training is
prematurely finished when the reward threshold of 195000
points in average over the last 200 episodes is reached. If
the training does not finish within 10000 episodes, the agent
at the time of the highest average reward is saved and used
for further evaluation.

A. Experiment 1) training of specialized agents

In exp. 1, we train agents to reach a single concrete goal.
We obtain three (three randomization seeds) times twelve
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moderately-generalized agents

A ag2.{l}{r}{-20;0;20} 82.29% 4115.33 12346

B ag2.{r}{l}{-20;-5;0;5;20} 97.03% 4934.00 14802

C ag2.{r}{r}{20;40;60} 88.08% 1937.67 5813

D ag2.{r}{r}{-60;-80;-100} 94.88% 1272.67 3818

super-generalized agent

mixed ag2.{l,r}{r}{-60;20;40} 78.04% 4746.67 14240

Fig. 6. Results of experiment 1 and 2. The agents naming notation include
information about the goal conditions they are trained with.

(twelve goal conditions) agents, each specialized to realize
one concrete goal. From those twelve concrete goals, three
each belong to one logical group A, B, C, or D, see Fig. 5.
With the varying 36 start positions and 32 AV behaviors each
agent is trained in 1152 different concrete tasks.

Fig. 6 shows the performance of the best specialized agents
per goal when deployed in their 1152 concrete tasks from
training and the average and aggregated learning duration
of the three agents (three randomization seeds). The average
success rate over all specialized agents is 78 % and 96 %
success rate in average for the best performing agents per
task. Not every trained agent which reached the reward
threshold in training performs well in deployment. However,
by training three agents per task with different random
generator seeds, an agent with a success rate higher than
91 % is obtained for every task. Agent ag1.{r}{l}{0} reaches
the goal in all 1152 concrete tasks while ag1.{r}{r}{20}
misses in three tasks.

The training duration varies strongly between agents and
used randomization seed. The agent with highest success
rate does not necessarily take longer in training than lower
performing agents. Some agents reach the reward threshold
in less than 1152 episodes which means that these agents
could not see every concrete tasks during training.

B. Experiment 2) training of moderately- and super-
generalized agents

In exp. 2, we train agents to reach a set of con-
crete goal conditions which has three to six ele-
ments. Agents ag2.{l}{r}{-20,0,20}, ag2.{r}{r}{20,40,60},
ag2.{r}{r}{-60,-80-100} are trained with three randomly

varied goals, making it 3456 different concrete learning
tasks. Agent ag2.{r}{l}{-20,-5,0,5,20} has five different
goals and is trained in 5760 different concrete tasks while
ag2.{l,r}{r}{-60,20,40} sees six different goals and 6912
different concrete learning tasks.

Fig. 6 shows the performance of the moderately- and
super-generalized agents per goal-set. A comparison with the
results from exp. 1 suggest that the training of specialized
agents leads to a higher success rate in reaching the goals.
However, in total the aggregated training duration of one
moderately-generalized agent with three randomization seeds
for logical groups A, C, and D is less than training three
times three specialized agents. The performance of the super-
generalized agent is on the lower end of the moderately-
generalized agents while the average training duration is on
par with the longest average duration of the moderately-
generalized agents.

C. Evaluation

To evaluate the performance, the agents are tested in
tasks they have not seen before during training. Similar
to the training set, the test set consists of freely selected
but different test conditions. The set of test tasks include
two known start states (r,r,-25),(r,r,25) and one known AV
behavior (8,-45,-2) together with 14 new goals per logical
group A, B, C, D and 28 new goals for the mixed group.
This results in 28, respectively 56 different test tasks for each
agent. The tests are conducted with the best agents from the
experiments.

Fig. 7 shows the goal parameter values of the tests together
with the results. The general performance level is, with
exception of ag2.{r}{l}{-20,-5,0,5,20}, below the success
rate in the learned tasks. In Test A and B, the moderately-
generalized agents reach a higher success rate than the
specialized agents, which meets the expectations. Agent
ag2.{r}{l}{-20,-5,0,5,20} even reaches 100 % success rate
which is higher than in the learned task. This might be
the result of the omission of several start states and AV
behaviors. Surprisingly, two specialized agents outperform
the moderately-generalized agents in Test C and D.

The performance of the super-generalized agent is com-
pared to three specialized agents. Here, the super-generalized
agent shows a success rate of 79 % and the specialized agents
of less than 25 %. Keeping in mind that the Test E includes
goals from different logical groups, the results shows the
effect of learning with varying goals through the adaptability
capability of the super-generalized agent in comparison to the
failing specialized agents.

V. DISCUSSION

A. Discussion of the experiment results

The findings of this study show that the specialized
agents perform with the highest success rate in their learned
tasks while the moderately-generalized agents are capable of
reaching sets of different goals with less aggregated learning
effort than needed for the training of several specialized



Training conditions Test conditions and success rates

logical 

goal 

group

 agent

 ag(exp.).{laneAISV,goal}

 {laneAV,goal}{xrel,goal} 

Test A Test B Test C Test D Test mixed

{l}×{r}×

{-26:4:26} 

{r}×{l}×

{-26:4:26} 

{r}×{r}×

{8:5:73} 

{r}×{r}×

{-113:5:-48} 

{l,r}×{r}×

{-82:5:-52, 

18:5:48} 

specialized agents

A ag1.{l}{r}{-20} 21.43%

ag1.{l}{r}{0} 35.71%

ag1.{l}{r}{20} 25.00%

B ag1.{r}{l}{-20} 28.57%

ag1.{r}{l}{0} 28.57%

ag1.{r}{l}{20} 28.57%

C ag1.{r}{r}{20} 67.86%

ag1.{r}{r}{40} 78.57%

ag1.{r}{r}{60} 92.86%

D ag1.{r}{r}{-60} 89.29%

ag1.{r}{r}{-80} 89.29%

ag1.{r}{r}{-100} 64.29%

mixed ag1.{l}{r}{0} 5.36%

ag1.{r}{r}{60} 25.00%

ag1.{r}{r}{-80} 25.00%

moderately-generalized agents

A ag2.{l}{r}{-20,0,20} 53.57%

B ag2.{r}{l}{-20,-5,0,5,20} 100%

C ag2.{r}{r}{20,40,60} 67.86%

D ag2.{r}{r}{-60,-80,-100} 78.57%

super-generalized agent

mixed ag2.{l,r}{r}{-60,20,40} 78.57%

Fig. 7. Success rates of actually reaching the goals. The test conditions
are not known to the agents from the training.

agents. However, a specialized agent can easily trained and
added if new test conditions become relevant in practical use.

The super-generalized agent was trained with the highest
variety in the set of goals and shows the worst success rate in
its learned tasks. This leads to the early assumption that the
scope of an agent shall be limited for higher performance.
Possibly the generalized agents do not interpret the observed
deviation-from-goal signals right. Here, further research is
needed, e.g., regarding the critic network since the used
default network could be the limiting factor and has not yet
been touched. However, the results of the tests with a mixed
test condition set gives confidence about the general idea of
generalized agents.

The experiments show a high difference in performance of
the agents trained with different randomization seeds. This
underlines the influence of luck during training and tuning
of the RL framework. Potentially good modeling concepts
can be concealed by a bad randomization seed and sorted
out too quickly during development. Further fine-tuning of
the learning setting could increase the overall performance
of the agents, however, this is a time consuming task as
experienced during the realization of the concept.

Threats to validity: Threats to the internal validity
of the experiments are caused by training only the super-
generalized agent with the goals {l} × {r} × {−60, 40}. It
cannot be ruled out that the lower performance of the agent is
due to challenges with these concrete goals and is not caused
by the larger scope of goals. This is due to finding a set of
goals {laneAISV,goal} × {laneAV,goal} × {xrel,goal} which
does not include invalid goals (e.g., (r,r,0) describes a crash,
or (l,l,40) violates the obligation to drive on the right), but

contain goals from different logical groups. Additionally, the
moderately-generalized agent of goal group B contains two
additional goals than there are specialized agents for group B.
Both aspects are a weakness in the experiment design.

Furthermore, regarding the zero-shot performance of the
agents in the test runs, the obtained results could be distorted
by the simplicity of the traffic scenario. The specialized
agents of group C and D perform well in the test of unknown
tasks, because they found a general solution which arbitrarily
is capable of reaching similar goals. For example, in Test D
an agent drives 100 m in front of the AV and 1 m/s slower.
The relative velocity is within the tolerances of the goal
condition. Therefore, the AISV gets closer to the AV and
reaches several goals of goal class D. The success of the
specialized agents in the evaluation tasks is only possible
due to the simplicity of the scenario. However, the average
success rate of the specialized agents in the mixed test is
clearly lower than the super-generalized agent, because the
beforementioned strategy can not work for realizing goals
from different logical groups.

Regarding the external validity and practice relevance of
the experiments, the influence of the very simple AV model
on the performance is unknown. The level of performance of
the trained agent might change completely when a different
AV model is used. This is an important aspect since the RL
agent is trained in a simple simulation framework but should
be deployed on an industrial test bench with a real ADS in
the loop. Therefore, the validation of the used AV model for
training should be future work.

B. Discussion of the deployment of the method in practice

The intended deployment environment of the RL agent
is an end-to-end hardware-in-the-loop-simulation test bench
with almost the full Electrical/Electronic (E/E) vehicle com-
pound connected as real hardware to the simulator, as
sketched in Fig. 2. The E/E compound of the vehicle-under-
test consists of, e.g., ECUs, sensors with injection interfaces
of the ADS, actors (e.g., steering rack, head lights), and
HMI (e.g., steering wheel, pedals). The real time PC (HIL
simulator) simulates the ego-vehicle dynamics and inertia
sensor data (e.g., speed, acceleration, rotation), a virtual
environment including road and traffic (this is where the
AISV is located), ego-vehicle environment sensor data (e.g.,
camera video stream, object lists for radar), and restbus
simulation of missing components (e.g., battery and motors).

For a first prototypical try-out, we transferred a trained
AISV to a HIL-simulation test bench. We prototypical in-
tegrate the trained policy of an RL agent of logical goal
group B in a dSPACE Automotive Simulation Models Traffic
(ASM Traffic) simulation model. Adapter functions ensure
that the AISV receives the same observation signals as in
the training environment. Adapter functions for the action
space include low-level controller which implement the high-
level action choice of the agent into vehicle movement.
Engineering of those adapter functions can widen the area
of use of the agent. Here, for example, we use the ASM
internal lane-following, lane-change and velocity controller



and hand-over the target velocity and desired lane index of
the agent. This also allows the agent to function on curvy
roads, although the agent was trained on a straight road only.

To get a first impression of the use case of the RL agent,
we use the AISV in the surrounding of a human controlled
vehicle (instead of an AV) on an endless straight road. The
AISV showed interesting human-like behavior when trying
to nudge the human driven vehicle into a lane change. That
shows another potential use-case of the AISV in driver-in-
the-loop simulators. Anyhow, limits of the AISV become
clear, when the vehicle-under-test drives at much higher
speeds than the AV model did during training. However, all
in all the prototype leaves a positive subjective impression
on the involved test engineers for the use of this method for
selected test cases.

VI. CONCLUSIONS

Overall, this study is a starting point for further research
on RL approaches to the scenario realization problem. In
comparison to action-trigger-based approaches like those
used in OpenSCENARIO XML implementations, the RL ap-
proach does not require the explicit definition of triggers and
actions for the SV. Since proprietary scenario formats and
OpenSCENARIO are widely used and sufficient for most use
cases, the RL approach can act as an user-defined external
controller used in symbiosis with the scenario scripts. The
RL approach helps in acts of the scenario script, in which
an interaction between an SV and the autonomously acting
AV should lead to actions of the AV.

First inhouse tests of the deployment of a simple prototype
to a HIL test bench showed promising results worth further
research. With the current AISV model, it is recommended
to use specialized-agents, as these show a higher success rate
in realizing the desired scenario conditions. However, with
the generalized-agents can a real benefit be derived from the
AI approach, as a new agent does not have to be trained for
each new scenario condition. Future research should focus
on enhancing the generalized-agents performance, adapting
the approach to more complex scenarios on realistic road
networks, and on the AV model used during training.
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